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Abstract. Poisson’s equation in parallel geometry is solved analytically with the inclusion 
of the electron emission velocity spectrum predicted by quantum mechanics. The mathe- 
matical difficulty of classically defining the cathode surface is overcome, to a first approxima- 
tion, by postulating a virtual cathode situated in front of the real cathode such that the 
majority of the emitted electrons have penetrated the potential barrier at that position. 
The treatment is nonrelativistic, assumes that the emission is exclusively by barrier penetra- 
tion, and is expressed in parameters that enable the results to be applied to most situations 
of interest. I t  is shown that the effect of nonzero emission velocity is negligible except for 
the cases ofcathodes of low work function operated at very high current densities. Particular 
attention is paid to the departure of the experimentally measured current from that predicted 
by the Fowler-Nordheim theory and the subsequent approach to the Langmuir-Child 
fully space charge limited current. I t  is shown that the point of departure can quantitatively 
be defined in terms of the fully limited current and the bearing of this on the design of field 
emission electron guns is considered. 

1. Introduction 

At very large values of field strength it is found experimentally that the field emission 
current density falls significantly below the value predicted by the Fowler-Nordheim 
(FN) theory. Two explanations have been offered for this observation, one primarily 
concerned with field strengths and the other with current densities. Cutler and Nagy 
(1964) suggested that this departure was due to the presence of a short range image 
force at the cathode potential barrier that is not included in the FN theory. They provide 
some quantum-mechanical evidence for an inverse-square factor in the barrier that 
only becomes significant at very high cathode field strengths. On the other hand 
Stern er a1 (1929) predicted departures from the then recently formulated FN theory 
when current densities were great enough for the associated space charge to  reduce 
the field at the cathode below the expected value. Their simple treatment, which was 
later extended by Barbour et a1 (1953), involved solving Poisson’s equation in a plane 
parallel geometry with the simplifying assumption that the electron emission velocity 
from the cathode was zero. An analysis carried out in curved geometries would be 
more applicable to field emission experiments but is beset with difficulties in the two 
successive integrations of Poisson’s equation. However, Norwicki (1967) bypassed 
this difficulty in a spherical geometry by evaluating inter-electrode potentials entirely 
in terms of a charge distribution composed of an assumed real space charge and its 
electrostatic image inside the spherical cathode. 
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A suitable choice of the parameters occurring in both of these approaches enables 
them to explain the deviation from the FN theory observed in the extensive experiments 
of Dyke and Trolan (1953) and it is highly likely that the departure is due to  a combina- 
tion of both effects. However, the influence of finite emission velocities on the space 
charge distribution has at no time been considered. Even though these velocities might 
be small they cannot be disregarded out of hand since even a slight change in cathode 
field, brought about by a slight change in the space charge distribution, can produce 
significant changes in the emission current density. The treatment here includes the 
emission velocity spectrum predicted by quantum mechanics and the analysis is carried 
out in terms of parameters that enable the results to be applied to any cathode material, 
anode voltage and electrode separation. A plane parallel electrode geometry is chosen 
purely to enable the two successive integrations of Poisson’s equation to be carried out 
exactly in analytic form. 

2. First integration of Poisson’s equation 

The formulation of the general space charge problem follows closely the treatment 
given by Fry (1921) in his study of thermal emission and recently applied by Wheeler 
(1972) to photoelectric emission. In the case of these emission processes, space charge 
can produce a potential minimum between the electrodes and the associated reversed 
field repels some electrons back to the cathode. The net result is that the anode current 
can be very much less than the primary emission current. However, for the case of 
field emission, the potential distribution must increase monotonically from cathode 
to  anode and the effect of space charge is to reduce the field in the cathode region, not 
to reverse it. The anode current is therefore always equal to the primary emission 
current. Absence of a potential minimum simplifies the problem since the inter-electrode 
region can mathematically be regarded as one region of space. 

Consider a plane parallel electrode configuration, situated in vacuum, and let the 
cathode emit a steady stream of electrons with normal velocity component U such that 
n(u) du is the number of electrons emitted per unit area and time with normal velocities 
in the interval U, du. The emission current density is therefore 

J = e jOm n(u) du, 

Let x denote the position and V the potential of a point in the electron cloud, both 
measured relative to the cathode surface. If all potentials are such that the treatment 
can be nonrelativistic then the electron velocity L‘ at the point x is given by 

(2) 
The space charge density at any point is obtained by dividing the number of electrons 
passing through unit area per unit time by their local velocity : 

)mu2 = )mu2 + el/. 

p = -eIOm?du. 

This space charge must be related to the potential V through Poisson’s equation 

(3) 

d2 V 
- = - 47rp = 4ne jOm 
dx2 du. 
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Multiply both sides of this equation by 2dV/dx where, from equation (2), dV/dx 
= (mu/e) dt./dx. This factor can go inside the integration since dV/dx is not a function 
of U. Poisson's equation then becomes 

do A( E) = 87cm n(u) du -. 
dx dx dx 

Now integrate both sides of this equation with respect to x, remembering that U is not 
a function of x : 

(E) * - E :  = 87cm (U - u)n(u) du, som (4) 

where E ,  = -(dV/dx), is the electric field at the cathode surface. E ,  and n(u) must 
now be related by field emission theory and the integration over electron velocity 
performed before the second integration with respect to x can be carried out. 

3. Electron emission velocity spectrum 

Application of a large positive potential gradient to the surface of a metal distorts the 
shape of the potential barrier confining the electrons within the metal. Relative to the 
top of the unperturbed barrier the potential describing the force on an isolated electron 
situated in vacuum just in front of the conducting cathode surface, in the presence of 
an applied field E , ,  can be expressed, 

( 5 )  

Figure 1 shows the form of this potential. Let n( W) d W be the number of electrons per 
unit area and time that penetrate the barrier with incident energies, normal to  the metal 
surface, in the interval W, dW. This number is equal to the number that strike the 
barrier per unit area and time, obtained from Fermi-Dirac statistics, multiplied by the 

e2 
V,(x) = - eEox -- 

4x 
x > 0. 

Figure 1. Schematic representation of cathode potential barrier and electrode configuration 
in a retarding field experiment. 
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barrier transmission. Fowler and Nordheim (1928) calculated this transmission for 
a ramp barrier, that is, for the E, term in equation ( 5 ) ,  and Nordheim (1928) extended 
the treatment to  include the remaining image term. At temperatures sufficiently low 
for there to be a negligible population above the Fermi level in the cathode metal the 
result assumes the following simple form : 

4nm 
h n(W)dW = Texp(- 

where p is the potential of the Fermi level relative to the bottom of the potential well, 
as indicated in figure 1, and 

4 is here the cathode work function, A and B are functions of the parameter e3E0/42, 
tabulated by Burgess et a! (1953). The parameter d is a convenient quantity for defining 
an energy scale since the spectrum n( W) of equation (6) has its maximum at W = p - d, 
that is, at an energy d below the Fermi level. The total emission current of equation (1) 
is also the integral of n(W)  over all possible incident energies, that is 0 < W < p.  If 
y = (p - W)/d, then the total current density is 

4nemd2 
h3 

J = -  

=--- 4nemd2 e x p ( - c ) { i (  I + $ )  expj -$)I. 
h3 

For all practical values of E, the parameter p/d >> 1, consequently, to a very good 
approximation, 

4nemd2 
h3 

J = -  exp( - c). (9) 

Equations (7) and (9) constitute the FN equation for field emission current. The exponen- 
tial term is the dominant factor and if lg J is plotted against 1/E, a near straight line is 
obtained as shown, for example, in figure 4. 

The electron emission velocity spectrum follows directly from equation (6) but the 
electrons cannot be represented classically outside the metal surface, until they have 
penetrated through the potential barrier. Since the thickness of the barrier is a function 
of the incident energy W, as shown in figure 1, there is some uncertainty in the mathe- 
matical representation of the cathode surface. Consider a plane virtual cathode parallel 
to  the physical cathode and positioned a certain distance in front of it such that the 
bulk of the emission current has penetrated the barrier at this position. Let this cathode 
be at  an energy nd below the Fermi level, as indicated in figure 1, where n is a pure 
number. Then, following equation (8), the emission current that has penetrated the 
barrier at this virtual cathode position is, 

4nemd2 
h3 

J ( n )  = ~ exp( -c) { 1 - (  1 + n) exp( -n)) .  
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The electrons with incident energy W < nd that constitute the current J - J ( n )  are 
still inside the barrier at this position and cannot be treated classically. Relative to 
this virtual cathode the emission velocity U is, 

$mu2 = W -  (p - nd) ,  o <  W G p .  (1 1) 

Before considering the choice of value for n i t  should be noted that the emission 
spectrum n(u),  defined by equations ( 6 )  and ( l l ) ,  is in complete agreement with the 
measurements made by Henderson and Dahlstrom (1939). Their apparatus, represented 
schematically by the whole of figure 1, consisted of a tungsten cathode, an accelerating 
anode grid through which the electrons could pass and enter a much weaker but more 
extensive retarding field region, and finally a collector electrode. The integrated 
electron velocity spectrum was examined by varying the potential of the collector 
relative to that of the cathode. I t  was found that the collector potential had to be made 
positive with respect to the cathode by an amount equal to at least the work function 
of the collector material before any electrons were collected. Referring to figure 1 
this meant that the surface of the collector, which had a relatively thick potential barrier, 
had to be at  the same potential as the Fermi level of the cathode. Now suppose that the 
virtual cathode is placed at this position, that is n = 0, then equation (1 1) indicates that 
the maximum emission energy of the electrons is zero. Consequently, in order that these 
electrons should pass over the broad barrier at the collector surface, it is necessary that 
this surface be raised to at least the same potential as the cathode Fermi level, which 
was the situation required experimentally. By further increasing the collector potential 
Henderson and Dahlstrom (1939) were able to infer the complete emission spectrum 
and found good agreement with equation ( 6 )  except in the low energy tail where secondary 
emission in their apparatus prevented close investigation. 

Substitution of equations (1 1) and ( 6 )  into equation (4) and performing the integra- 
tions over velocity, with Vand x now measured relative to the virtual cathode, results in, 

2 (g) - E ; =  

where D { x }  = exp( - x2) JX, exp(t2) d t  is Dawson’s integral. This integral approaches 
zero as x -, 0 or  x 4 00, and, in the latter case, has the asymptotic form D{x} -, 1/2x. 

A suitable value for the parameter n can be inferred from equation (10) which gives 
the fraction J ( n ) / J  of the total current that can be regarded as a free electron gas at the 
virtual cathode. For example n = 7, giving J(7 ) /J  = 0.993, allows classical treatment 
of the bulk of the emitted electrons. Such a value of n will underestimate space charge 
effects since the peak of the emission spectrum, occurring at W = p - d ,  will have an 
associated emission energy +mu2 = 6d  and, from equation (3), the greater the velocity 
the smaller the space charge. On the other hand an overestimate of space charge 
effects can be obtained by assuming that all electrons have zero emission velocity. In 
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this case the emission spectrum n(u) must be regarded as a delta function at U = 0 in 
order that the total current can be defined by equation (1). Equations (I), (2) and (4) 
then give directly, 

- E :  = -( 87rmJ --) 2e Vi. 
e 

4. Second integration of Poisson's equation 

If the parameter n in equation (12) is sufficiently large then a great simplification can 
be brought about by neglecting the terms multiplied by the exponential and by replacing 
the Dawson integral by its asymptotic expression. These operations give, 

2 
32n2m2d2(2d)' exp(-c) {( n+- edV)' - n 2 - 6  ( n,- edV)} (3 - E ; =  h3 

where 6 is a correction that approaches zero as V + 0 or as V -+ a. For n = 7 this 
correction is most significant in the region 0 < eV < 7d where it amounts to  3.3 % of 
the remaining terms. Further simplification results if this correction is neglected and 
if the following new variables are introduced : 

X =  - Y =  

With these substitutions and use of equation (9), equation (15) takes the simple form: 

(15) 
1287r2mJ2 d n _ _  Z =  128n2mJ2 V - 128z2mJ2 x 

e E;' e E:' e e E : ~  

( g)2 = ( Y + Z ) * - z ' +  1, 

which can be integrated directly to give, 

X = $[{ 1 +( Y +  Z)'- Z'}'- 3(1- 2') .( 1 + ( Y +  Z)*- Z')*- 32'+2]. (17) 

This equation inherently contains the more simplified treatments of previous workers. 
For example, putting Z = 0 and neglecting unity in equation (16), which is equivalent 
to putting E ,  = 0 in equation (13), leads to, 

x = $y* 
or 

This is the Langmuir (1913) and Child (191 1) (LC) equation for fully space charge limited 
emission ; it is valid for any emission process under the assumptions of zero field and 
velocity at the cathode surface. If, on the other hand, 2 = 0 but unity is retained. then 
equations (16) and (13) are the same and represent the general case of overestimation of 
space charge effects considered by Barbour et a1 (1953). Consequently the exact form 
of the potential distribution between the electrodes must be somewhere between the 
expressions given by equation (17) for 2 = 0 and Z(7) which correspond, respectively, 
to an overestimate and an underestimate (n  = 7) of space charge effects. 

For the case of pure field emission considered here there is an upper limit to Z ( 7 )  
imposed by the condition that the potential barrier at the cathode should always be 
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greater in energy than the highest level occupied by the electrons within the metal. 
On account of the image term in equation (5) the barrier is reduced in height (Schottky 
effect), as well as in width, as E ,  is increased. Differentiation with respect to x shows 
that the maximum of the barrier lies above the Fermi level provided Eo < 4’/e. If 
this condition is not satisfied then electron emission by ‘thermal evaporation’ over 
the top of the barrier can take place, even at zero temperature, and the foregoing analysis 
would be inaccurate. The function A in equation (7 )  approaches zero as this limiting 
cathode field is approached and equations (7), (9) and (15) then define the following 
upper limits to  J and Z(7) for which the emission is purely by barrier penetration at 
zero temperature : 

E ,  < 6 . 9 4 ~  106q52 Vcm-’, J < 7.41 x lo7 43  A cm-2, Z(7) < 0.655 $-’, 

(19) 

where 4 is expressed in electron volts. In particular Z(7) is less than unity for all cathode 
materials. 

Figure 2 shows a logarithmic plot of equation (17) for the two extremes Z = 0 and 
Z = 1. The axes here scale with J and E ,  according to  equation (1 5) and J is the dominant 
factor. Small values of X and Y correspond to the passage of small currents and in this 
region the curves approximate to X = Y.  This is simply the uniform field relation 
I/ = E,x which is physically expected at low currents when space charge effects are 
negligible. For larger values of X and Y the Z = 0 curve is the first to deviate from the 
X = Y relation since this curve represents an overestimate of space charge effects. At 
the other extreme, for sufficiently large values of J ,  the potential distribution in the 
anode region approaches the LC equation (18), X = $Y*. 

V 
-3 - 2  - I  0 I 2 3 4  

lg x 
Figure 2. Inter-electrode potential distribution according to equation (17) for the two 
extremes Z = 0 and Z = 1. 
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5. Application of the results 

In most applications of field emission it is the current density J that is required as a 
function of the applied anode voltage V, for given values of the electrode spacing xA and 
specified cathode work function 4.  In principle the ( J ,  V,) characteristic can be deter- 
mined from figure 2 in conjunction with the FN equation for the relevant cathode but 
the technique is iterative and laborious. A much simpler technique is to construct an 
intermediate graph of X / Y  against lg X with X and Y evaluated at the anode, that is, 
at x = xA and I/ = V,. In this case it follows from equation (15) that, 

E O  -= - - -  - 
Y VA E ’  

where E = V,/xA is the field in the absence of space charge effects. Figure 3 shows the 
results of the computations for 2 = 0. 0.01 and 0.10. The abscissa is presented 

01 
-15 -13 - 1 1  -9 -7 

lg (J2x*lE,3) 

Figure 3. Cathode field reduction E,/E produced by space charge, as a function of current 
density J (A cm-’), electrode spacing x A  (cm) and cathode field E ,  (V cm-’) for three values 
of the parameter 2. 

numerically with J expressed inA cm-2, E ,  in V cm- and xA in cm. In these same units 
and with q5 in electron volts, 

(20) 
J’ Z(7) = 3.98 x IO4 q 5 - *  - 
E ; .  

Physically figure 3 presents the fractional reduction in field at the cathode surface, 
caused by space charge, as a function of emission current and electrode spacing. This 
figure must be used along with calculations based on the FN equation such as those 
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shown in figure 4 for tungsten. The numerical computations of Dolan (1953) were used 
for this figure and the parameter J 2 / E i  also computed to enable X and Z ( 7 )  to be 
evaluated. Figures 3 and 4 were used together to compile figure 5 for tungsten in the 
following manner. Firstly a value of E ,  was selected and J and J 2 / E i  determined from 
figure 4, For a given xA this enables E, /E  to be evaluated from figure 3 for both 2 = 0 
and Z(7). Consequently the anode potential, VA = x,E,(E/E,),  required to  produce the 
current J was determined. By selecting a range of initial values of E ,  it was possible 

-16 . cn 

0 -  . -24 

- 4  -32 
0.2 0.3 0.4 

I /Eo 

Figure 4. Current density J (A cm-’) and J’ /E;  for tungsten as a function of cathode field 
E ,  (V cm- ’) according to FN theory. 

Figure 5. Current density J (A cm-’) as a function of applied field E (V cm-’) and electrode 
spacing x A  (cm) for tungsten. 
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to evaluate the (J, V,) characteristic for given values of x,. The axes J and 1/E were 
chosen for figure 5 in order to show the departure from the FN equation at large values 
of J and the subsequent approach to the LC equation as space charge effects became 
dominant. A wide range ofx, was used (1 cm to cm) in order to embrace both the 
experimental plane parallel geometries and also the more usual near hyperboloidal, 
conical and hemispherical cathode shapes. For these latter cases (Dyke and Trolan 
1953, Dyke et 011953, Barbour er 011953) it is customary to apply plane parallel emission 
theory simply by defining an effective xA that gives the same space charge free cathode 
field E in parallel geometry as that calculated for the relevant experimental geometry, 
both for the same applied V,. I t  must be emphasized that this technique is acceptable 
when space charge effects are negligible and a good approximation in the region where 
departure from the FN equation begins. However the technique will not be valid when 
space charge effects become dominant since the numerical factor in the L C  equation (1 8) 
is a function of the electrode geometry. The references cited here quote values of X, 

down to 5 x cm. I t  is only for such small values of xA that the LC limiting current 
is greater than the current required to make Z(7)  for tungsten significantly different 
from zero. This is shown in figure 5 for X, = cm where the two curves, representing 
upper and lower limits to space charge effects, just separate before complete limitation 
takes place. 

6. Discussion 

The departure of the measured currents from the FN equation, shown in figure 5 for 
tungsten, can be expressed quantitatively as follows. From figure 3, E,/E = 0.90 when 
J 2 x , / E 3  = 1 . 3 6 ~  10-”A2 V3, ‘or,  using equation (18) when J = O.16JLc where 
J,, is evaluated at the relevant xA and V,. Consequently when the emission current, 
as calculated from the FN equation, reaches 16 % of the LC limiting current, the slope 
of the lg J against 1/E plot will have deviated by 10 % from that given by the FN equation. 

Although the effects of finite velocity of emission are too small to be significant in 
the case of tungsten, the effect becomes more pronounced for cathodes of lower work 
function. Figure 3 indicates that differing values of Z are only significant in the region 
where space charge is mildly affecting the cathode field. For example the ordinates 
for the curves 2 = 0 and 2 = 0.01 have a maximum separation of 3.8 % in the region 
E , / E  = 0.9. I f  the value Z(7) = 0.01 is taken as the criterion for the onset of significant 
emission velocity effects, then equations (7), (9) and (20) can be solved for the value of J ,  
as a function of 4 ,  at which this onset occurs and figure 6 shows the results of such 
calculations. For tungsten (4 = 4.5 eV) the onset occurs at the high value of lg J = 8.9 
but for cathodes of lower work function the current for onset is within the range that 
can be attained experimentally. However i t  must be emphasized that emission velocity 
effects only occur if the experimental parameters V, and xA are such that this value of 
J lies somewhere in the transition region between the FN equation and the LC equation, 
that is, for roughly 0.2 < J/J, ,  < 0.8. 

In the past few years field emission has been widely used to produce very high 
currents for electron beam experiments. The FN equation shows that V, and xA should 
be chosen to make E as large as possible in order that the strong dependence of J on 
E ,  can be employed. However the foregoing discussion shows that JLc must also be 
sufficiently large if the benefits of the FN equation are not to be destroyed by the presence 
of space charge. I f  the previous relation, J = O.16JL,, is taken as the criterion for 
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2 3 4 5 6 
4 

Figure 6. Current density 3 (A cm-’), above which emission velocity effects are important, 
as a function of cathode work function 4 (ev). 

departure from the FN equation then equations (7), (9) and (18) can be solved for the 
value of V, at which departure takes place as a function of X, and 4.  It is more useful 
to  express the results in the form of an E against lg X, graph, as shown in figure 7 ,  as 
this enables application to  other geometries. The work functions displayed here include 
tungsten and platinum and the FN computations of Dolan (1953) were used for the 
calculations. It must be noted that, in the case of platinum, the magnitude of the work 
function is very dependent on the technique of measurement, the degree of out-gassing 

41 

01 
-5 -4 -3 -2 -I 0 

lg XA 

Figure 7. Applied field E (V cm- I),  above which the FN equation is invalid, as a function 
of electrode spacing x,(cm) and cathode work function 4(eV). Curve A, platinum, 
q5 = 6.3 eV; curve B, tungsten, 9 = 4.5 eV; curve C, 4 = 2.5 eV. 
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and the crystalline structure of the sample investigated. The recent table compiled 
by Weast (1972) quotes values between 4.52 and 6.35eV with a preferred value of 
5.32 eV which is considerably lower than the value of 6.3 eV assumed by Dolan and 
used in figure 7. If the experimental value of E lies on or above the curve for the relevant 
4 and x A  then considerably greater currents can be obtained, for the same E ,  by reducing 
the value of xA. 

Finally i t  must be pointed out that the analysis here is nonrelativistic, assumes 
that the cathode temperature is sufficiently low for there to be a negligible electron 
population above the Fermi level, and also assumes that emission is by barrier penetra- 
tion, that is, the peak of the cathode potential barrier always lies above the Fermi level. 
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